Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Opt Express ; 32(6): 10429-10443, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571255

RESUMO

With the deepening of research and the further differentiation of damage types, and to compensate for both linear and nonlinear damage in visible light communication systems (VLCs), we propose a novel discrete wavelet transform-assisted convolutional neural network (DWTCNN) equalizer that combines the advantages of wavelet transform and deep learning methods. More specifically, wavelet transform is used in DWTCNN to decompose the signal into diverse coefficient series and employ an adaptive soft-threshold method to eliminate redundant information in the signal. The coefficients are then reconstructed to achieve complete signal compensation. The experimental results show that the proposed DWTCNN equalizer can significantly reduce nonlinear impairment and improve system performance with the bit error rate (BER) under the 7% hard-decision forward error correction (HD-FEC) limit of 3.8 × 10-3. We also experimentally compared DWTCNN with the Long Short-Term Memory (LSTM) and entity extraction neural network (EXNN) equalizer, the Q factor has been improved by 0.76 and 0.53 dB, and the operating ranges of the direct current (DC) bias have increased by 4.76% and 23.5%, respectively.

2.
Acta Neuropathol Commun ; 12(1): 61, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637883

RESUMO

We aimed to identify the druggable cell-intrinsic vulnerabilities and target-based drug therapies for PitNETs using the high-throughput drug screening (HTS) and genomic sequencing methods. We examined 9 patient-derived PitNET primary cells in HTS. Based on the screening results, the potential target genes were analyzed with genomic sequencing from a total of 180 PitNETs. We identified and verified one of the most potentially effective drugs, which targeted the Histone deacetylases (HDACs) both in in vitro and in vivo PitNET models. Further RNA sequencing revealed underlying molecular mechanisms following treatment with the representative HDACs inhibitor, Panobinostat. The HTS generated a total of 20,736 single-agent dose responses which were enriched among multiple inhibitors for various oncogenic targets, including HDACs, PI3K, mTOR, and proteasome. Among these drugs, HDAC inhibitors (HDACIs) were, on average, the most potent drug class. Further studies using in vitro, in vivo, and isolated PitNET primary cell models validated HDACIs, especially Panobinostat, as a promising therapeutic agent. Transcriptional surveys revealed substantial alterations to the Nrf2 signaling following Panobinostat treatment. Moreover, Nrf2 is highly expressed in PitNETs. The combination of Panobinostat and Nrf2 inhibitor ML385 had a synergistic effect on PitNET suppression. The current study revealed a class of effective anti-PitNET drugs, HDACIs, based on the HTS and genomic sequencing. One of the representative compounds, Panobinostat, may be a potential drug for PitNET treatment via Nrf2-mediated redox modulation. Combination of Panobinostat and ML385 further enhance the effectiveness for PitNET treatment.


Assuntos
Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Tumores Neuroendócrinos/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Transdução de Sinais
3.
Bioact Mater ; 35: 31-44, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38304916

RESUMO

Skin microbiota plays an important role in wound healing, but skin injuries are highly susceptible to wound infections, leading to disruption of the skin microbiota. However, conventional antibacterial hydrogels eliminate both probiotics and pathogenic bacteria, disrupting the balance of the skin microbiota. Therefore, it is important to develop a wound dressing that can fend off foreign pathogenic bacteria while preserving skin microbiota stability. Inspired by live bacteria therapy, we designed a probiotic hydrogel (HAEPS@L.sei gel) with high viability for promoting wound healing. Lactobacillus paracasei TYM202 encapsulated in the hydrogel has the activity of promoting wound healing, and the hydrogel matrix EPS-M76 has the prebiotic activity that promotes the proliferation and metabolism of Lactobacillus paracasei TYM202. During the wound healing process, HAEPS@L.sei gel releases lactic acid and acetic acid to resist the growth of pathogenic bacteria while maintaining Firmicutes and Proteobacteria balance at the phylum level, thus preserving skin microbiota stability. Our results showed that live probiotic hydrogels reduce the incidence of inflammation during wound healing while promoting angiogenesis and increasing collagen deposition. This study provides new ideas for developing wound dressings predicated on live bacterial hydrogels.

4.
J Med Virol ; 96(2): e29400, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38293843

RESUMO

Serum hepatitis B virus (HBV) spliced RNAs (spRNAs) are ubiquitous in HBV-infected patients; however, their clinical significance remains unknown. Therefore, we aimed to explore the relationship between HBV spRNAs and liver disease progression in chronic hepatitis B (CHB) patients; in vitro cell line assessment was also performed. The serum HBV wild-type RNA (wtRNA) and spRNA levels were individually quantified in a cohort of 279 treatment-naïve, hepatitis B e antigen positive CHB patients with or without cirrhosis. The spRNA proportion was determined as (spRNA × 100%)/(spRNAs + wtRNA). 20 patients' serum samples underwent spRNA species profiling using next-generation sequencing. Serum spRNA species 1, 2, 3, 4, and 5 were the most common variants. The spRNA proportion varied from 0.00% to 19.02%, with higher levels in HBV genotype C patients than in those with genotype B (1.76% vs. 0.84%, p < 0.001). The spRNA proportion was positively associated with the alanine aminotransferase levels (r = 0.144, p = 0.053) and significantly higher in cirrhotic than in non-cirrhotic patients (1.69% vs. 1.04%, p = 0.001). Multivariate analysis revealed a 2.566-fold higher risk of cirrhosis in patients with elevated spRNA proportion (p = 0.024). In vitro experiments confirmed that spRNAs contributed to hepatic stellate cell activation, which is critical in liver fibrosis development. Therefore, increased HBV spRNA expression poses a risk for liver disease progression. Quantifying serum HBV spRNAs can aid in monitoring liver disease progression. Furthermore, the therapeutic targeting of spRNAs may improve the prognosis of patients with CHB.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Humanos , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , RNA/uso terapêutico , Cirrose Hepática/complicações , Antígenos E da Hepatite B , Progressão da Doença , DNA Viral/genética
5.
Adv Mater ; 36(3): e2308017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009645

RESUMO

Alloys often combine different metals to generate superior mechanical properties. However, it is challenging to prepare high mechanical strength minerals with similar strategies. Using calcium carbonate (CaC) and calcium phosphate (CaP) as examples, this work synthesizes a group of compounds with the chemical formulas Ca(CO3 )x (PO4 )2(1- x )/3 (0 < x < 1, CaCPs) by cross-linking ionic oligomers. Unlike mixtures, these CaCPs exhibit a single temperature for the phase transition from amorphous to crystallized CaC (calcite) and CaP (hydroxyapatite). By heat-induced synchronous crystallization, dual-phase CaC/CaP with continuous crystallized boundaries are resembled to alloy-like minerals (ALMs). The mechanical properties of the ALMs are adjusted by tailoring their chemical compositions to reach a hardness of 5.6 GPa, which exceed those of control calcite and hydroxyapatite samples by 430% and 260%, respectively. This strategy expands the chemical scope of inorganic materials and holds promise for preparing high-performance minerals.

6.
Sensors (Basel) ; 23(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067980

RESUMO

In recent years, super-resolution imaging techniques have been intensely introduced to enhance the azimuth resolution of real aperture scanning radar (RASR). However, there is a paucity of research on the subject of sea surface imaging with small incident angles for complex scenarios. This research endeavors to explore super-resolution imaging for sea surface monitoring, with a specific emphasis on grounded or shipborne platforms. To tackle the inescapable interference of sea clutter, it was segregated from the imaging objects and was modeled alongside I/Q channel noise within the maximum likelihood framework, thus mitigating clutter's impact. Simultaneously, for characterizing the non-stationary regions of the monitoring scene, we harnessed the Markov random field (MRF) model for its two-dimensional (2D) spatial representational capacity, augmented by a quadratic term to bolster outlier resilience. Subsequently, the maximum a posteriori (MAP) criterion was employed to unite the ML function with the statistical model regarding imaging scene. This hybrid model forms the core of our super-resolution methodology. Finally, a fast iterative threshold shrinkage method was applied to solve this objective function, yielding stable estimates of the monitored scene. Through the validation of simulation and real data experiments, the superiority of the proposed approach in recovering the monitoring scenes and clutter suppression has been verified.

7.
Front Oncol ; 13: 1287628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111524

RESUMO

Background: Immune checkpoint inhibitors (ICIs) have changed the therapeutic options for extensive-stage small-cell lung cancer (ES-SCLC). In this real-world study, we analyzed the treatment patterns in patients with ES-SCLC and evaluated the efficacy of chemotherapy combined with immunotherapy as first-line therapy. Methods: A retrospective analysis was performed on patients with ES-SCLC who received treatment at China-Japan Friendship Hospital (Beijing, China) between August 1, 2020, and April 30, 2023. The treatment patterns appeared in the form of Sunburst Chart and Sankey diagram. The survival analyses were conducted by Kaplan-Meier curves. Results: A total of 157 patients with ES-SCLC were retrospectively included. According to first-line therapy, patients were divided into the chemotherapy (CT) group (n=82) and chemo-immunotherapy (CIT) group (n=75). The median treatment lines were 2[1, 2] and cycles were 8[5, 12], respectively. 82 patients received the second line of therapy, followed by 37 for the third, 15 for the fourth, 11 for the fifth, and 5 for the sixth. Overall, the treatment patterns involved 11 options including 12 chemotherapy regimens, 11 ICIs, and 4 targeted agents. The second-line treatment pattern had the most options (9) and regimens (43). In the first 3 lines, chemotherapy was the largest proportion of treatment options. The addition of ICIs prolonged progression-free survival from 6.77 (95% confidence interval [CI], 6.00-7.87) to 7.33 (95% CI, 6.03-9.80) months (hazard ratio [HR]=0.67, 95% CI, 0.47-0.95; P=0.025), overall survival from 12.97 (10.90-23.3) to 14.33 (12.67-NA) months without statistically significant difference (HR=0.86, 95% CI, 0.55-1.34; P=0.505). Conclusion: The treatment options of patients with ES-SCLC are more diversified. Combination therapy is the current trend, where chemotherapy is the cornerstone. Meanwhile, ICIs participate in almost all lines of treatment. However, the clinical efficacy remains barely satisfactory. We are urgently expecting more breakthrough therapies except immunology will be applied in the clinic.

8.
Adv Healthc Mater ; : e2302443, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962054

RESUMO

Although immunosuppressive drugs for targeting T cells are the standard of care in acute transplantation rejection, the role of innate immune cells should not be ignored. Here, single-cell RNA sequencing (scRNA-seq) and flow cytometry are performed to reveal the dynamic changes of innate immune cells within the acute rejection time and find a significantly-increased presence of Ly6G- Ly6C+ inflammatory macrophages and decreased presence of neutrophils among all types of immune cells. Next, to further explore potential targets regulating Ly6G- Ly6C+ inflammatory macrophages, scRNA-seq is used to analyze the reciprocal signaling of both neutrophils and macrophages, along with the surface genes of macrophages. It is found that activating colony-stimulating factor 1/ colony-stimulating factor 1 receptor (CSF1/CSF1R) andcluster of differentiation 47/signal regulatory protein α (CD47/SIRPα) signaling may serve as a strategy to relieve Ly6G- Ly6C+ inflammatory macrophage-mediated early graft rejection. To investigate this hypothesis, CSF1/CD47 dual-targeting nanovesicles (NVs) derived from IFN-γ-stimulated induced pluripotent stem cell-derived mesenchymal stem cells ( iPSC-MSCs )are designed and constructed. It is confirmed that CSF1/CD47 NVs synergistically induce the differentiation of Ly6G- Ly6C- M2 inhibitory macrophages by the CSF1/CSF1R pathway, and inhibit the phagocytosis of inflammatory macrophages and inflammatory response by the CD47/SIRPα pathway, ultimately relieving immune rejection. This study highlights the power of dual-targeting CSF1/CD47 NVs as an immunosuppressant against early innate immune responses with the potential for broad clinical applications.

9.
Microbiome ; 11(1): 262, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001551

RESUMO

BACKGROUND: Diet-induced dyslipidemia is linked to the gut microbiota, but the causality of microbiota-host interaction affecting lipid metabolism remains controversial. Here, the humanized dyslipidemia mice model was successfully built by using fecal microbiota transplantation from dyslipidemic donors (FMT-dd) to study the causal role of gut microbiota in diet-induced dyslipidemia. RESULTS: We demonstrated that FMT-dd reshaped the gut microbiota of mice by increasing Faecalibaculum and Ruminococcaceae UCG-010, which then elevated serum cholicacid (CA), chenodeoxycholic acid (CDCA), and deoxycholic acid (DCA), reduced bile acid synthesis and increased cholesterol accumulation via the hepatic farnesoid X receptor-small heterodimer partner (FXR-SHP) axis. Nevertheless, high-fat diet led to decreased Muribaculum in the humanized dyslipidemia mice induced by FMT-dd, which resulted in reduced intestinal hyodeoxycholic acid (HDCA), raised bile acid synthesis and increased lipid absorption via the intestinal farnesoid X receptor-fibroblast growth factor 19 (FXR-FGF19) axis. CONCLUSIONS: Our studies implicated that intestinal FXR is responsible for the regulation of lipid metabolism in diet-induced dyslipidemia mediated by gut microbiota-bile acid crosstalk. Video Abstract.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Animais , Camundongos , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica , Microbioma Gastrointestinal/fisiologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL
10.
iScience ; 26(11): 108135, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876808

RESUMO

Oxidative dehydrogenation of propane (ODHP) is a promising process for producing propene. Recently, some boron-based catalysts have exhibited excellent olefin selectivity in ODHP. However, their complex synthetic routes and poor stability under high-temperature reaction conditions have hindered their practical application. Herein, we report a self-evolution method rather than conventional assembly approaches to acquire structures with excellent stability under a high propane conversion, from a single precursor-MgB2. The catalyst feasibly prepared and optimized exhibited a striking performance: 60% propane conversion with a 43.2% olefin yield at 535°C. The BOx corona pinned by the strong interaction with the borate enabled zero loss of the high conversion (around 40%) and olefins selectivity (above 80%) for over 100 h at 520°C. This all-in-one strategy of deriving all the necessary components from just one raw chemical provides a new way to synthesize effective and economic catalysts for potential industrial implementation.

11.
J Agric Food Chem ; 71(38): 14027-14037, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37702045

RESUMO

Our previous study found that fucogalactan sulfate (FS) from Laminaria japonica exhibited significant hypolipidemic effects. To further elucidate the mechanism, we first constructed a dyslipidemia mouse model with humanized gut microbiota and proved the main differential metabolic pathway involved bile acid metabolism. Then, we evaluated the beneficial effects of FS on dyslipidemia in this model mice, which revealed that oral FS administration reduced serum cholesterol levels and mitigated liver fat accumulation. Gut microbiota and microbiome analysis showed FS increased the abundance of Ruminococcaceae_NK4A214_group, GCA-900066755, and Eubacterium, which were positively associated with the fecal DCA, ß-MCA, and HDCA. Further investigation demonstrated that FS inhibited the hepatic farnesoid X receptor (FXR), while activating the intestinal FXR-FGF19 pathway, leading to suppression of CYP7A1 and CYP8B1, as well as potentially reduced bile acid synthesis and lipid absorption. Overall, FS regulated lipid metabolism in diet-induced humanized dyslipidemia mice via the bile acid-mediated intestinal FXR-FGF19-CYP7A1/CYP8B1 pathway.


Assuntos
Dislipidemias , Laminaria , Animais , Camundongos , Ácidos e Sais Biliares , Dieta , Dislipidemias/etiologia , Dislipidemias/genética , Metabolismo dos Lipídeos , Esteroide 12-alfa-Hidroxilase , Sulfatos
12.
Artigo em Inglês | MEDLINE | ID: mdl-37604728

RESUMO

Plectropomus leopardus is a valuable marine fish whose skin color is strongly affected by the background color. However, the influence of the visual sense on the skin color variation of P. leopardus remains unknown. In the present study, transcriptome analysis was used to examine the visual response mechanism under different background colors. Paraffin sections of the eyes showed that the background color caused morphological changes in the pigment cells (PCs) and outer nuclear layer (ONL) and the darkening of the iris color. The transcriptome analysis results indicated that the gene expressions in the eyes of P. leopardus were significantly different for different background colors. We identified 4845, 3069, 5874, and 6309 differentially expressed genes (DEGs) in the pairwise comparisons of white vs. initial, blue vs. initial, red vs. initial, and black vs. initial groups, respectively. Some hub genes and key pathways regulating the adaptive mechanism of P. leopardus's eyes to the background color were identified, i.e., the JAK-STAT, mTOR, and Ras signaling pathways, and the ndufb7, slc6a13, and novel.3553 gene. This adaptation was achieved through the synthesis of stress proteins and energy balance supply mediated by hub genes and key pathways. In addition, the phenylalanine metabolism, tyrosine metabolism, and actin cytoskeleton-related processes or pathways and genes were responsible for iris and skin color adaptation. In summary, we inferred that stress protein synthesis, phenylalanine metabolism, and energy homeostasis were critical stress pathways for P. leopardus to adapt its skin color to the environment. These new findings indicate that the P. leopardus skin color variation may have been caused by the environmental adaption of the eyes. The results provide new insights into the molecular mechanisms underlying the skin color adaptation of P. leopardus.


Assuntos
Bass , Animais , Bass/fisiologia , Perfilação da Expressão Gênica , Pele , Fenilalanina , Transcriptoma
13.
Adv Healthc Mater ; 12(28): e2301439, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37647626

RESUMO

Silk fibroin derived from the domesticated silkworm Bombyx mori is a protein-based biopolymer with low immunogenicity, intrinsic biodegradability, and tunable mechanical properties, showing great potential in biomedical applications. Using chemical modification to alter the primary structure of silk fibroin enables the expanded generation of new silk-based biomaterials. Inspired by the molecular structure of hyaluronic acid, which is enriched in carboxyl groups, an efficient method with scaling-up potential to achieve controlled carboxylation of silk fibroin to prepare silk acid (SA) is reported, and the biological properties of SA are further studied. The SA materials show tunable hydrophilicity and enzymatic degradation properties at different carboxylation degrees (CDs). Subcutaneous implantation in mice for up to 1 month reveals that the SA materials with a high CD present enhanced degradation while causing a mild foreign-body response, including a low inflammatory response and reduced fibrotic encapsulation. Immunofluorescence analysis further indicates that the SA materials show pro-angiogenesis properties and promote M2-type macrophage polarization to facilitate tissue regeneration. This implies great promise for SA materials as a new implantable biomaterial for tissue regeneration.


Assuntos
Bombyx , Fibroínas , Animais , Camundongos , Seda/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Fibroínas/farmacologia , Fibroínas/química , Bombyx/química , Próteses e Implantes
14.
Foods ; 12(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569146

RESUMO

This study aimed to compare the in vitro fermentation characteristics of polysaccharides from Bergamot and Laoxianghuang (fermented 1, 3, and 5 years from bergamot) using the stable in vitro human gut fermentation model. Results showed that bergamot polysaccharide (BP) and Laoxianghuang polysaccharides (LPs) with different surface topographies were characterized as mannorhamnan (comprising Mannose and Rhamnose) and polygalacturonic acid (comprising Galacturonic acid and Galactose), respectively. The distinct effects on the gut microbiota and metabolome of BP and LPs may be due to their different monosaccharide compositions and surface morphologies. BP decreased harmful Fusobacterium and promoted beneficial Bifidobacterium, which was positively correlated with health-enhancing metabolites such as acetic acid, propionic acid, and pyridoxamine. Lactobacillus, increased by LPs, was positively correlated with 4-Hydroxybenzaldehyde, acetic acid, and butyric acid. Overall, this study elucidated gut microbiota and the metabolome regulatory discrepancies of BP and LPs, potentially contributing to their development as prebiotics in healthy foods.

15.
J Colloid Interface Sci ; 649: 403-415, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37354797

RESUMO

HYPOTHESIS: Worm-like micelles are susceptible to heating owing to the fast dynamic exchange of molecules between micelles. Inhibition of such exchange could afford robust worm-like micelles, which is expected to largely improve rheology properties at high temperatures. EXPERIMENTS: A cationic surfactant docosyl(trimethyl)azanium chloride (DCTAC) and a strongly hydrophobic organic counterion 3-hydroxy naphthalene-2-carboxylate (SHNC) were used for the worm-like micelles fabrication. The microstructure was characterized using cryogenic transmission electron microscopy and small-angle neutron scattering, and the interactions between DCTAC and SHNC were characterized using nuclear magnetic resonance spectroscopy. Rheometer was employed to measure the rheological properties of the solution. FINDINGS: SHNC/DCTAC at the molar ration of 1:2 forms ultra-stable worm-like micelles, whose viscosity remain stable at temperature up to 130 °C. SHNC is found to strongly adsorbs on DCTAC micelle with the orientation on the surface of micelle, keeping the naphthalene backbone entire penetration into the palisade layer while both carboxylic and hydroxyl groups protrude out of the micelle. With temperature increasing, this adsorption further strengthens, resulting in the growth contour length and accompanying the enhancement of rheological properties. One SHNC molecule and two DCTAC molecules are speculated to form a stable complex via multiple interactions including hydrophobic, cationic-π, and π-π interactions, which decreases the dynamic exchange of them between micelles. These findings are helpful to understand surfactant aggregates stability and assist the development of novel stable supramolecular nanostructures. Additionally, the excellent thermal stability of this worm-like micellar fluid makes it a potential high-temperature resistant clean fracturing fluid for deep oil reservoirs.

16.
J Colloid Interface Sci ; 645: 765-774, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37172486

RESUMO

Sunlight concentration has been demonstrated as one promising strategy for practically photoelectrochemical (PEC) water splitting with exceeding 10% solar-to-hydrogen efficiency. However, the operating temperature of PEC devices, including the electrolyte and photoelectrodes, can be elevated to 65 ℃ naturally due to the concentrated sunlight and the thermal effect of near-infrared light. In this work, high temperature photoelectrocatalysis is evaluated using titanium dioxide (TiO2) photoanode as a model system, which is believed to be one of the most stable semiconductors. During the studied temperature range of 25-65 ℃, a linear increment of photocurrent density with a positive coefficient of 5.02 µA cm-2 K-1 can be observed. The onset potential for water electrolysis shows a significant negative shift by 200 mV. An amorphous titanium hydroxide layer and a number of oxygen vacancies generate on the surface of TiO2 nanorods, promoting the water oxidation kinetics. During long-term stability testing, the NaOH electrolyte degradation and TiO2 photocorrosion at high temperatures could cause the decaying photocurrent. This work evaluates the high temperature photoelectrocatalysis of TiO2 photoanode and reveals the mechanism of temperature effects on TiO2 model photoanode.

17.
Molecules ; 28(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37241893

RESUMO

Hydrophobically associating polymers have found widespread applications in many domains due to their unique rheological behavior, which is primarily dictated by the hydrophobe content. However, the low fraction of hydrophobic monomers in polymers makes this parameter's precise and straightforward measurement difficult. Herein, a variety of hydrophobically associating polyacrylamides (HAPAM) with different alkyl chain lengths (L) and hydrophobic contents ([H]) were prepared by post-modification and accurately characterized by 1H NMR spectroscopy. The maximal fluorescence emission intensity (I) of 8-anilino-1-naphthalenesulfonic acid, which is sensitive to hydrophobic environments, was then detected in those polymer solutions and shown as a ratio to that in the polymer-free solution (I0). It was found that I/I0 for 0.5 wt% HAPAM can be scaled versus CH, which is a variate related to both L and [H], as I/I0 = 1.15 + 1.09 × 108CH3.42, which was also verified to be applicable for hydrophobic associating hydrolyzed polyacrylamide (HHAPAM). This relationship provides a handy method for determining the hydrophobic content of hydrophobically associating polymers, particularly for field applications.

18.
Biomed Pharmacother ; 164: 114903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224756

RESUMO

BACKGROUND: Male infertility is a worldwide problem but few treatments, especially irradiation-induced testicular injury. The aim of this research was to investigate novel drugs for the treatment of irradiation-induced testicular injury. METHODS: We administered dibucaine (0.8 mg/kg) intraperitoneally to male mice (6 mice per group) after five consecutive daily 0.5 Gy whole-body irradiation, and evaluated its ameliorating efficacy by testicular HE staining and morphological measurements. Drug affinity responsive target stability assay (Darts) were used to find target protein and pathway; mouse primary Leydig cells were isolated and to explore the mechanism (Flow cytometry, Western blot, and Seahorse palmitate oxidative stress assays); finally rescue experiments were completed by combining dibucaine with fatty acid oxidative pathway inhibitors and activators. RESULTS: The testicular HE staining and morphological measurements in dibucaine treatment group was significantly better than that in irradiation group (P < 0.05); sperm motility and mRNA levels of spermatogenic cell markers were also higher than those in the latter (P < 0.05). Darts and Western blot results showed that dibucaine targets CPT1A and downregulate fatty acid oxidation. Flow cytometry, Western blot, and Palmitate oxidative stress assays of primary Leydig cells demonstrated that dibucaine inhibits fatty acid oxidation in Leydig cells. Dibucaine combined with etomoxir/baicalin confirmed that its inhibition of fatty acid oxidation was beneficial in ameliorating irradiation-induced testicular injury. CONCLUSIONS: In conclusion, our data suggest that dibucaine ameliorates irradiation-induced testicular injury in mice by inhibiting fatty acid oxidation in Leydig cells. This will provide novel ideas for the treatment of irradiation-induced testicular injury.


Assuntos
Células Intersticiais do Testículo , Doenças Testiculares , Humanos , Masculino , Camundongos , Animais , Células Intersticiais do Testículo/metabolismo , Dibucaína/metabolismo , Motilidade dos Espermatozoides , Testículo/metabolismo , Doenças Testiculares/metabolismo , Ácidos Graxos/metabolismo , Palmitatos
19.
Chin Med ; 18(1): 59, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210537

RESUMO

Immune checkpoint inhibitors (ICIs) have revolutionized cancer management and have been widely applied; however, they still have some limitations in terms of efficacy and toxicity. There are multiple treatment regimens in Traditional Chinese Medicine (TCM) that play active roles in combination with Western medicine in the field of oncology treatment. TCM with ICIs works by regulating the tumor microenvironment and modulating gut microbiota. Through multiple targets and multiple means, TCM enhances the efficacy of ICIs, reverses resistance, and effectively prevents and treats ICI-related adverse events based on basic and clinical studies. However, there have been few conclusions on this topic. This review summarizes the development of TCM in cancer treatment, the mechanisms underlying the combination of TCM and ICIs, existing studies, ongoing trials, and prospects for future development.

20.
Huan Jing Ke Xue ; 44(5): 2715-2723, 2023 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-37177944

RESUMO

Soil C, N, and P elements are important components of the forest ecosystem. Studying the influence of exogenous carbon input change on the stoichiometry of the forest soil can reveal the element recycling process and the balanced feedback mechanism of the forest ecosystem. In this study, using the research object of a spruce forest in Tianshan Mountain, the short-term effect of exogenous carbon input on soil C, N, and P in the soil was analyzed through Detritus Input and Removal Treatment (DIRT), and then the interrelationship between soil stoichiometry and other soil physicochemical factors under different treatments was discussed. The results showed that:① the soil C, N, and P contents in most soil layers were the highest double litter (DL) treatment, soil ω(C) by soil depth from shallow to deep was 168.92, 119.88, 103.33, and 64.23 g·kg-1; soil ω(N) was 10.60, 9.32, 8.78, and 8.07 g·kg-1; soil ω(P) was 0.50, 0.45, 0.37, and 0.36 g·kg-1; in the no input (NI) treatment, soil ω(C) by soil depth from shallow to deep was 104.56, 89.24, 48.08, and 43.96 g·kg-1; soil ω(N) was 6.83, 2.60, 2.63, and 2.22 g·kg-1; soil ω(P) was 0.40, 0.34, 0.32, and 0.22 g·kg-1; and a decreased trend was shown with the deepening of the soil layer. Except in the NI treatment, C:N was 0-10 cm and significantly higher than that in other soils (P<0.05), NL soil C:P at 30-50 cm was significantly higher than that in other soils, and NI soil N:P was 0-10 cm and significantly higher than that in other soils (P<0.05). ② Microbial carbon, nitrogen, and phosphorus were significantly higher from 0-10 cm than that in other soil layers (P<0.05). ③ Redundancy analysis results showed that soluble organic carbon and microbial nitrogen at different carbon input levels were important factors affecting the stoichiometric characteristics of soil C, N, and P.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...